Abnormal sodium transport in synaptosomes from brain of uremic rats.

نویسندگان

  • C L Fraser
  • P Sarnacki
  • A I Arieff
چکیده

The causes of central nervous system (CNS) dysfunction in uremia are not well known and are not completely reversed by dialysis. This problem was investigated in synaptosomes, which are membrane vesicles from synaptic junctions in the brain. We measured Na uptake under conditions of control, veratridine stimulation, and tetrodotoxin inhibition, in synaptosomes from normal and acutely uremic (blood urea nitrogen, 250 mg/dl) rats. In the control state, maximal Na uptake was 2.2 +/- 0.2 and 1.9 +/- 0.3 nmol/mg of protein in normal and uremic synaptosomes, respectively. With veratridine stimulation, Na uptake was increased by 1.9 and 3.6 nmol/mg of protein in normal vs. uremic rats (P less than 0.001). The increased veratridine-stimulated Na uptake observed in uremia could be due either to increased membrane permeability to Na or decrease in the Na-K ATPase pump activity. To investigate this, we studied the Na-K ATPase pump function by evaluating uptake of K (using rubidium as a tracer), uptake of Na during ATP stimulation, and inhibition of Rb and Na uptake by ouabain. In uremic rats both Rb uptake and ATP-stimulated Na uptake were significantly less than in normals (P less than 0.005). This suggests a defect in the Na-K ATPase pump. Membrane permeability for Na was then evaluated both by measuring initial Na uptake, and with addition of valinomycin. No change in Na uptake pattern was observed with valinomycin, and initial Na uptake was not significantly different in normal versus uremic synaptosomes. These data show that (a) in uremic rats veratridine-stimulated Na accumulation is significantly greater than normal; (b) the increased Na accumulation observed in uremia appears to be due to alterations in Na-K ATPase pump activity; and (c) the altered Na accumulation observed is probably not due to a uremic environment, but may be secondary to a physiologic alteration in synaptosomal function due to the uremic state. These abnormalities may affect neurotransmission and may be associated with the CNS alterations observed in uremia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium transport abnormality in uremic rat brain synaptosomes.

Brain calcium is elevated in patients and laboratory animals with uremia. The significance of this finding is unclear. We evaluated calcium transport in brain of both normal and acutely uremic rats (blood urea nitrogen = 250 mg/dl) by performing studies in synaptosomes from rat brain cerebral cortex. Synaptosomes are vesicular presynaptic nerve endings from brain that contain mitochondria and a...

متن کامل

Influence of the oestrous cycle on L-glutamate and L-aspartate transport in rat brain synaptosomes.

Oestrous cycle and sex differences in sodium-dependent transport of L-[3H]glutamate and L-[3H]aspartate were investigated employing well washed synaptosomes prepared from rat brain cortex. Transport was best analysed on the basis of two components, a high and low affinity transport site. Oestrous cycle and sex differences were observed for both substrates. The high affinity transporter displaye...

متن کامل

Abnormal cation transport in uremia. Mechanisms in adipocytes and skeletal muscle from uremic rats.

The cause of the abnormal active cation transport in erythrocytes of some uremic patients is unknown. In isolated adipocytes and skeletal muscle from chronically uremic chronic renal failure rats, basal sodium pump activity was decreased by 36 and 30%, and intracellular sodium was increased by 90 and 50%, respectively, compared with pair-fed control rats; insulin-stimulated sodium pump activity...

متن کامل

Calcium transport in synaptosomes and subcellular membrane fractions of brain tissue in spontaneously hypertensive rats.

The uptake of Na+ and Ca2+ by synaptosomes and uptake of Ca2+ by the mitochondria and microsomes of brain tissue of rats with spontaneous hypertension (SH rats) and normotensive Kyoto-Wistar rats (WKY rats) were studied with an isotope-exchange method. By means of inhibitor analysis it has been shown that calcium influx into the synaptosomes during depolarization of their plasma membrane takes ...

متن کامل

Evidence that parathyroid hormone-mediated calcium transport in rat brain synaptosomes is independent of cyclic adenosine monophosphate.

In vivo PTH administration to rats resulted in increased brain synaptosomal Ca++ transport, while parathyroidectomy (PTX) resulted in decreased transport. To determine the mechanism of action of PTH on Ca++ transport in rat brain synaptosomes, we performed transport studies by the Na-Ca exchanger and also measured cAMP generation in synaptosomes from PTX rats. Ca++ transport was studied after i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 75 6  شماره 

صفحات  -

تاریخ انتشار 1985